Calculation of Geometrical Structure Factors for Space Groups of Low Symmetry. III

By E. W. Radoslovich
Division of Soils, Commonwealth Scientific and Industrial Research Organization, Adelaide, Australia

(Received 27 January 1958 and in revised form 9 September 1958)

Abstract

This paper describes a simple calculator for functions such as $\cos (h x+k y) \cdot \cos l z$. Values of these functions may be readily read off from suitably arranged tables of $\cos h x \cdot \cos l z$, after a simple mechanical shift of origin by an amount $k y$.

Introduction

A simple mechanical device has previously been described (Radoslovich \& Megaw, 1955) which allows values of $\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(h x+k y+l z)^{*}$ to be read directly from tables of $\left\{\begin{array}{l}\sin \\ \cos \end{array}\right\}(h x)$. This is useful for space groups $P 1$ and $P \overline{1}$, and for certain two-dimensional projections of the monoclinic space groups. The device has also been extended (Radoslovich, 1955) to compute $\Sigma \cos (h x+k y+l z)$. It would, however, be more useful when studying monoclinic crystals to be able to tabulate directly quantities of the kind

$$
\left\{\begin{array}{l}
\sin \\
\cos
\end{array}\right\}(h x+k y) \cdot\left\{\begin{array}{l}
\sin \\
\cos \}
\end{array}\right\}(l z) .
$$

This is the form assumed by both A and B in the

[^0]structure factor expression $F=A+i B$ for the space groups nos. 3 to 15 in the International Tables (1952).

The earlier device has been redesigned to permit such calculations. The tables have been enlarged to read $\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(h x) \cdot\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(l z)$ directly, at suitable intervals of $l z$ and for integral values of h. These tables can still be moved mechanically, however, to include the term $k y$ in the form $\left\{\begin{array}{l}\sin \\ \cos \end{array}\right\}(h x+k y) \cdot\left\{\begin{array}{l}\sin \\ \cos \end{array}\right\}(l z)$.

Description

The three angles to be specified (viz. $h x, k y$ and $l z$) are given as decimal fractions of a cycle, at intervals of 0.01 (i.e. $3 \cdot 6^{\circ}$); values of cosines are given at the same angular intervals. There are 26 different tables of $K \cos h x$, where K has values $K=\cos l z$, and $l z=$ $0 \cdot 00,0 \cdot 01 \ldots 0 \cdot 25$, for successive tables.

The values of $h x$ are set out on four strips of paper

Fig. 1. General view of calculator, with cover removed. This shows the $k y$ scales on the two edges of the chart, and the four columns of the $h x$ scale on the cover, with some ' h ' pins in place. (The block of figures on the right of the cover are for use with the $\cos (h x+k y+l z)$ section of the calculator). The markers are conveniently stored in the top compartment.

Fig. 2. First section of the movable chart. Arrows point to the table for $\cos 0.01 . \cos h x$, which is given four times (see text). When $l z$ values are in red (sloping figures here) then $\cos l z$ or $\sin l z$ is negative.
glued to the lower side of a perspex cover carried on the sloping face of the instrument (Fig. 1). These strips are correctly spaced to reveal, through the remaining transparent sections in the perspex cover, just one at a time of several vertical tables of cosines. The required table on the chart underneath can be chosen by moving the cover sideways, up to about two inches.

Small holes are drilled in the perspex, at the position of each ' $h x$ ', into which can be inserted flat markers mounted on a short pin. The markers are numbered $1,2,3, \ldots$, corresponding to values of h, and there are two sets, with black and red figures on a white background, for h and \bar{h}. The markers are not essential, but are an aid to quick reading.

The values of $k y$ and $l z$, and the 26 tables of $K \cos h x$ are set out (Fig. 2) on a moving chart consisting of a strip of tracing linen 8 in . wide and about 15 feet long. The $k y$ values and the cosine tables are arranged vertically, with one space between each two-figure column, whilst values of $l z$ are set out horizontally, as column headings to the cosine tables. Since it is impossible to accommodate all the 26 cosine tables in parallel columns across the chart they have been set out in five sections on the chart, six tables in each section, except the last. There is a blank space of about two inches between sections.

The $k y$ values are set out vertically down the left hand edge of the chart, beginning at $k y=0.00$ and running through $1 \frac{1}{4}$ cycles to $k y=1 \cdot 25$ (equivalent to $0 \cdot 25$). This $k y$ column is duplicated on the righthand edge of the chart, but here the values begin at $k y=0.25$ and run to $k y=1.50$ (i.e. $0 \cdot 50$). This setout of the $k y$ values is repeated in each of the five sections of the chart mentioned above.

Two values of $k y$ are always visible at the top left
and right corners of the computer. A small bracket at the upper left corner of the chart area carries the word 'cos' and an arrow. This defines the origin with respect to the left-hand $k y$ scale, to be used when calculating $\cos (h x+k y) \cdot\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(l z)$. The right-hand bracket defines the origin for calculating $\sin (h x+k y)\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(l z)$.
Now consider the arrangement of one $K \cdot \cos h x$ table, e.g. when $K=\cos l z$ for $l z=0.01$. This table lies in the first section of the chart. It is set out vertically, beginning at a value 0.99 corresponding to $\cos 0.01 \cdot \cos h x$ for $h x=0.00$ and running for $1 \frac{1}{4}$ cycles through to $h x=1 \cdot 25$. The dimensions of the perspex cover of the instrument, however, permit only one quarter of a cycle to be seen at any one time, and therefore this $K \cdot \cos h x$ table is repeated in three further columns, beginning at values corresponding to $h x=0.25,0.50$ and 0.75 (Fig. 2). In this way a full cycle of one (and one only) $K \cos h x$ table is always visible through the perspex, no matter how that section of the chart is moved backwards and forwards behind it. Values of $K \cdot \cos h x$ for which $\cos h x$ is negative are in red. The successive columns of $K \cos h x$ tables are not in order of increasing $l z$, but are arranged so that $\cos l_{1} z \cdot \cos h x$ and $\sin l_{1} z \cdot \cos h x\left(=\cos \left(0 \cdot 25-l_{1} z\right)\right.$ $\times \cos h x$) are in adjacent columns and hence both values can be read off with only a slight movement of the cover. Values of $\cos l_{1} z \cdot \cos h x$ and $\cos l_{1} z \cdot \sin h x$ are obviously related by a chart shift of a quarter cycle.

The value of $l z$ (viz. $l z=0.01$) to which this table corresponds will appear through the clear sections of the perspex cover at the top of the left-hand $K \cos h x$ column. But this table also represents values of $\cos 0.99 \cos h x,-\cos 0.51 \cdot \cos h x,-\cos 0.49 \cos h x$, $\sin 0.26 \cos h x, \sin 0.24 \cos h x,-\sin 0.76 \cos h x$, and
$-\sin 0.74 \cos h x$. All eight values of $l z$, (under the appropriate heading, and in black or red, as the above products have a positive or negative sign) therefore appear at the top of the other three columns of this particular table, $\cos 0.01 . \cos h x$. It is by this means that all values of $l z$ from 0.00 to $1 \cdot 00$, and all four combinations $\left\{\begin{array}{c}\sin l z \\ \cos l z\end{array}\right\} \cdot\left\{\begin{array}{c}\sin h x \\ \cos h x\end{array}\right\}$ can be calculated from the 26 different tables given.

The sign of $\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(h x+k y) \cdot\left\{\begin{array}{l}\sin \\ \cos \end{array}\right\} l z$, which will depend on the sign of both components, is determined from its colour (black or red) on the table. This choice is aided by a simple indicator above the perspex, consisting of a metal bar sliding behind covers. Values of $l z$ for which $\left\{\begin{array}{l}\sin \\ \cos \end{array}\right\} l z$ is negative are shown in red; and the metal bar is moved to place ' $l z$ ' on it opposite a black or red dot, depending on the colour of $l z$ on the chart. The + and - signs on the bar then show whether all black figures (for the quantity $\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(h x+k y)$ $\left.\times\left\{\begin{array}{c}\sin \\ \cos \end{array}\right\}(l z)\right)$ are to be read as positive and all red figures as negative, or vice versa.

A mechanical drive* for moving the chart smoothly either forwards or backwards is included, though it is not essential. A small non-reversing electric motor is mounted on a pivot so that it can be placed in three positions determined by a standard radio switch. In the first of these the rubber driving wheel from the motor engages a knurled wheel on one winding drum, for forward motion of the chart. The middle position is neutral; and in the third position the knurled wheel on the other chart drum is engaged, for reverse motion. Spring-mounted fibre washers on both winding drums ensure that the chart is always taut. The chart may also be moved manually.

The device is used as follows. Coordinates (x, y, z) known to any desired accuracy can be used as a starting point, and the integral multiples $h x, k y$ and $l z$ are formed to the same accuracy. These quantities are then rounded off to the nearest $0 \cdot 01$. The value of $l z$ for some particular calculation (involving either $\cos l z$ or $\sin l z$) is then located at the head of one of the five sections and its colour is set on the sign indicator. The perspex cover is placed so that this $l z$ is visible through one of the transparent strips in the cover. The chart is now moved within that section so that the required value of $k y$ lines up with the arrow, for calculating either $\cos (h x+k y)$ or $\sin (h x+k y)$. The h markers are placed at the tabulated values of $h x$, and are left in these positions until a further atom is being considered. The values on the chart opposite the markers are values for

* The computer was constructed (and in part designed) by Messrs. K. Barrow and A. Palm in the workshops of this Division.

$$
h= \pm 1,2 \ldots, \quad \text { of }\left\{\begin{array}{c}
\sin \\
\cos
\end{array}\right\}(h x+k y) \cdot\left\{\begin{array}{c}
\sin \\
\cos
\end{array}\right\}(l z)
$$

depending on the position of the cover and on which $k y$ scale is used.

Cos $(h x+k y+l z)$ section

In order to make one device as useful as possible two further sections of chart, both for calculating $\left\{\begin{array}{l}\sin \\ \cos \end{array}\right\}(h x+k y+l z)$, are included. One of these is an exact copy of that described previously (Radoslovich \& Megaw, 1955), but the tables have been more widely spaced to match the transparent strips on the new perspex cover. The other section has the same layout, but the interval used for all the tables is now 0.005 cycles, so that the accuracy is doubled. This requires twice as many values of $h x$, and to accommodate these the tables are set out in eight columns rather than four. The perspex cover is replaced by one carrying the $h x$ table in eight columns, at 0.005 cycle intervals.

Discussion

The present computer retains the several advantages of the earlier device, which were discussed in detail by Radoslovich \& Megaw (1955). It is, however, worth emphasizing that it is now possible to compute geometrical structure-factors for all of the triclinic and monoclinic space groups directly from the formulae in the International Tables (1952), so taking advantage of any symmetry relations for these space groups. Contributions of the separate atoms to the geometrical structure factor can be read off immediately by unskilled computers, using no more than a table of $h x, k y$ and $l z$ values to set up the device. The rounding-off errors are kept to the minimum which is possible when using trigonometrical tables at 0.01 cycle intervals.

The following example shows the speed of this device. Values of $\cos (h x+k y) \cdot \cos l z$ were calculated for an atom for which $x=0.938, y=0.417$ and $z=0.055$, the indices being given values $h=\overline{20}, \overline{18}, \ldots, 18,20$; $k=0,1, \ldots, 6$; and $l=3$ and 4 . Eight minutes were needed to set up the h markers, and thereafter 300 values of $\cos (h x+k y) \cdot \cos l z$ were tabulated in 23 minutes, i.e. as fast as they could be written down. It was not tiring to use the computer at this speed, which is considerably faster than can be achieved by other simple methods of calculating trigonometric products of thit form.

References

Radoslovich, E. W. \& Megaw, H. D. (1955). Acta Cryst. 8, 95.
Radoslovich, E. W. (1955). Acta Cryst. 8, 456.
International Tables for X-ray Crystallography (1952), vol. 1. Birmingham: Kynoch Press.

[^0]: * i.c. either $\sin (h x+k y+l z)$ or $\cos (h x+k y+l z)$, as required.

